

Examples:
$$\bigcap_{n=1}^{\infty} \left[0, \frac{1}{n}\right] = \left\{0\right\}$$
$$\bigcap_{n=1}^{\infty} \left[0, 1 + \frac{1}{n}\right] = \left[0, 1\right] \neq \phi$$

Non - examples:
(1)
$$\bigcap_{\substack{n=1\\n=1}}^{\infty} (0, \frac{1}{n}) = \phi$$
 hot closed!
(2) $\bigcap_{\substack{n=1\\n=1}}^{\infty} [n, \infty) = \phi$ not bounded!
(3) $\bigcap_{\substack{n=1\\n=1}}^{\infty} [n, n+1] = \phi$ not nested!

Claim: $\xi \in \bigcap_{n=1}^{\infty} In (\Rightarrow \bigcap_{n=1}^{\infty} In \neq \phi)$
Pf of Claim: Want B E In = [an, bn] VnEN
• $z = \sup S$ is an upper bd of S
⇒ an ≤ ξ ∀n ∈ iN
· To see why } E bn In EIN. we argue
by contradiction. Suppose NOT,
Imein st. 3> bm
Since $\xi = \sup S$ is the least upper bd.
bu cannot be an upper bol for S
⇒∃kein st. bm < ak e S
Case 1: m< k => bus bm < ak s br
$C_{a} = 2 + m_{a} + m_{b} = 0 + k + m_{b} + k + k + m_{b}$
$\underline{\qquad}$
The remaining part is left as exercise.

Cor: iR is uncountable.

Pf: Suffices to show [0,1] is uncountable. Argne by contradiction. Suppose [0,1] is countable. Then, we can exhaust all the elements in [0.1] in a Sequence: $[0,1] = \{X_1, X_2, X_3, X_4, \dots, \}$ (*) We will construct a nested sequence of closed l bdd intervals In, n eiN, inductively as $\begin{array}{c|c} x_1 & x_2 & x_3 \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$ follows: · choose II S [0.1] st. XI& I, - choose $I_2 \subseteq I_1$ st. $X_2 \notin I_2$ · choose In < In-1 st Xn & In By NIP, $\bigcap_{n=1}^{\infty}$ In $\neq \phi$, say $\xi \in \bigcap_{n=1}^{\infty}$ In $\leq [0,1]$ By (*), 3 = Xk for some keIN => 3 & Ik

5